THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL ADVANCED CERTIFICATE OF SECONDARY EDUCATION

EXAMINATION

2010 laineam 2011 later my 2011 CHEMISTRY 2

(For both School and Private Candidates)

Time: 2:30 Hours and Englishment to Tuesday, 16th February 2010 a.m.

This paper consists of ten (10) questions in sections A, B and C.

- Figure 1 1 1 1 Committee and Continue of the C 2. Answer five (5) questions choosing at least one (1) question from each section. the contact the constitution of the constitution of the contact th
- Each question carries twenty (20) marks a series 2010 to the correct 2010 to the corre
- Mathematical tables and non-programmable calculators may be used. 4.
- Cellular phones are not allowed in the examination room. 5.
- Write your Examination Number on every page of your answer booklet(s). 6.
- For calculations you may use the following constants: 7.

Gas constant, $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1} \text{ or } 0.0082 \text{ atm mol}^{-1} \text{ K}^{-1} \text{ dm}^3$

 $GMV = 22.4 \text{ dm}^3$

1 litre = $1 \text{ dm}^3 = 1000 \text{ cm}^3$

1 faraday = 95,500 coulombs

Velocity of light, $C = 3.0 \times 10^8 \text{ m/s}$

K = 39.C1 = 35.5Atomic masses: H = 1, O = 16,

This paper consists of 5 printed pages.

SECTION A

1. (a) Explain the following terms:

١

- (i) Common ion effect
- (ii) Buffer solution
- (iii) Acid dissociation
- (iv) Ionic product of water
- (v) Salt hydrolysis.

(5 marks)

- (b) Calculate the molar solubility of silver chromate in water at 25 °C. For silver chromate, the Ksp is 2.4 x 10⁻² mol² dm⁻⁶. (6 marks)
- (c) (i) Will the solubility of silver chromate in 0.1 M aqueous solution of potassium dichromate be greater or lower than that of water? Explain.
 - (ii) What are the three limitations of solubility product?

(9 marks)

- 2. (a) (i) State two laws which govern the depression of freezing point.
 - (ii) What are the three uses of colligative properties? (7 marks)
 - (b) Electrolyte A dissociates into B, C, D +..., as shown in the following equation: A □ B+C+D+.....
 If the degree of dissociation is α, express α through Vant Hoff's factor, i. (5 marks)
 - (c) A solution of calcium nitrate containing 15 g of anhydrous salt in 1000 g of water freezes at -0.435 °C. Calculate the degree of dissociation of the salt. (8 marks)
- 3. (a) (i) Define Kohlrauch's law of independent ionic mobilities.
 - (ii) Give ionic representation of Kohlrausch's law of independent ionic mobilities. (4 marks)
 - (b) (i) Give three applications of Kohlrausch's law of independent ionic mobilities.
 - (ii) Show how you can obtain molar conductivity at infinite dilution (□^ω) of ethanoic acid from molar conductivities at infinite dilution of hydrochloric acid and potassium chloride. (8 marks)
 - (c) The electrolytic conductivity of saturated solution of silver chloride at 18 °C after deducting the electrolytic conductivity of water is 1.22 x 10⁻⁴ s m⁻¹. The molar conductivity of Ag⁺ and Cl⁻¹ ions at infinite dilution at 18 °C are 0.54 x 10⁻² and 0.652 x 10⁻² s m⁻² mol⁻¹. Calculate the solubility of silver chloride at 18 °C in mol/kg. (Assume the solution is dilute). (12 marks)

- 4. (a) Describe the following:
 - (i) Half life of chemical reaction
 - (ii) Molecularity of chemical reaction
 - (iii) Rate determining step
 - (iv) Reaction mechanism
 - (v) Order of reaction.

(5 marks)

- (b) The reaction, $AB \rightarrow A + B$ is a first order reaction with $K = 2.02 \times 10^{-5}$ sec⁻¹ at 540 K. Calculate the percentage of decomposition after heating AB at 540 K for 1 hour. (6 marks)
- (c) In the process of studying isomerisation of cyclopropane to propene in the gas phase at 433 °C the following data were obtained.

Time/hours	0	2	5	10	20	30
% cyclopropane remaining	100	91	79	63	40	25

- (i) Write an equation for the reaction involved.
- (ii) Show that the reaction is first order with respect to cyclopropane.
- (iii) Calculate the rate constant of the reaction.

(9 marks)

SECTION B

- 5. (a) Give explanation for the following statements:
 - (i) Only lithium reacts with nitrogen to form nitride in group I elements.

(2 marks)

- (ii) Standard electrode potentials become more negative down the group, but the standard electrode potential of lithium is the most negative in the group.

 (2 marks)
- (iii) Group IV elements have in common the +2 and +4 oxidation states.
 - (2 marks)

(iv) B³⁺ does not exist.

- (2 marks)
- (v) Group III elements largely show covalency.
- (2 marks)
- (vi) Although it is hard to have Al³⁺, [Al(H2O)]³⁺ is stable. At the same
 - time it is difficult to find $[B(H_2O)]^{3+}$. (6 marks)
- (vii) Nitrogen and phosphorus are non metals; arsenic and antimony are metalloids (semi- metals); bismuth is a true metal. Give explanation and show evidence for these statements. (4 marks)
- 6. (a) Describe the following terms:
 - (i) Diamagnetism
 - (ii) Coordination number
 - (iii) Complex ion.

(6 marks)

- (b) Write the electronic configuration of the following:
 - (i) Neutral scandium atom
 - (ii) Scandium (III) ion
 - (iii) Neutral nickel atom

(iv) Nickel (II) ion.

(8 marks)

- (c) Name the following complex compounds:
 - (i) $[Ag(NH_3)_2]_3[Fe(CN)_6]$
 - (ii) K[Co(H₂O)₂(NO₂)₂].

(3 marks)

- (d) Write the formula of the following complex compounds:
 - (i) Dichlorotetraaquocobalt (III) chloride
 - (ii) Tetraaquocopper (II) tetrabromoplatinate.

(3 marks)

- 7. (a) What is the relationship between ideal gas equation and Van der Waals equation? (2 marks)
 - (b) 3.50 moles of a gas occupies 5.20 litres at 50 °C. Calculate the pressure of the gas in atmospheres using
 - (i) the ideal gas equation
 - (ii) the Van der Waals equation.

(8 marks)

- (c) In the light of the Dalton's law of partial pressures, establish a relationship which exists in a mixture of two gaseous substances A and B found in a container of volume V at a constant temperature T. (4 marks)
- (d) Oxygen produced in the thermal decomposition of potassium chlorate at 25 °C and atmospheric pressure of 752 mm Hg is 150 ml. What is the mass in grams of oxygen produced during this reaction? (6 marks)

SECTION C

8. (a) Name the following compounds according to IUPAC system:

(ii)
$$\bigcirc \cdot \stackrel{\Pi}{\bigcirc} \cdot \stackrel{\Pi}{\bigcirc} = C - \bigcirc \bigcirc$$

(iv)
$$C_6H_5CH_2C_6H_5$$

(10 marks)

- (b) Giving an example in each case define the following:
 - (i) Organic substitution
 - (ii) Addition reaction
 - (iii) Elimination reaction.

(6 marks)

(c) Compound B is unsaturated hydrocarbon, (C₄H₆) which requires 2 moles of H₂ for hydrogenation using nickel catalyst. It forms white precipitate with Ag(NH₃)₂⁺OH⁻. It is acidic in nature. Identify compound B giving reasons for each step, (4 marks)

- 9. (a) Indicate the reagent(s) which would be appropriate to accomplish each of the following numbered conversions.

 - (ii) \bigcirc CH₃ $\xrightarrow{5}$ \bigcirc CH₃ $\xrightarrow{6}$ \bigcirc CH₂Br
 - (iii) \bigcirc $\xrightarrow{7}$ \bigcirc \bigcirc $\xrightarrow{CH_2CH_3}$ \bigcirc (8 marks)
 - (b) What simple chemical test that would be used to distinguish the following compounds:
 - (i) Acetic acid and acetaldehyde
 - (ii) 2 pentanone and 3 pentanone
 - (iii) Benzyl alcohol and bezaldehyde.

(6 marks)

- (c) Write all possible constitutional isomers of the following:
 - (i) $C_2H_4O_2$
 - (ii) C_3H_8O .

(6 marks)

10. (a) Differentiate a PVC from a polyester.

(8 marks)

(b) Give the products of the following polymerisation reactions and classify them as addition or condensation polymerisation.

(i)
$$n CH_2 = CH + n CH_2 = CH \longrightarrow$$

$$CH \mid CH_2$$

$$CH_2$$

- (ii) $HCOO-(CH_2)_4-COOH+NH_2-(CH_2)_6-NH_2 \rightarrow$
- (iii) CH₂OHCH₂OH + HCOO ○ COOH →

(iv)
$$\bigcirc C = CH_2 + \bigcirc C = CH_2$$
 (8 marks)

(c) Explain at least two hazards of polymers. (4 marks)